Intro to the imaginary numbers (article) | Khan Academy (2024)

Learn about the imaginary unit i, about the imaginary numbers, and about square roots of negative numbers.

Want to join the conversation?

Log in

  • Dlnickelson17

    8 years agoPosted 8 years ago. Direct link to Dlnickelson17's post “what would -i^-i be, woul...”

    what would -i^-i be, would it just be 2^2

    (114 votes)

    • ArjanK

      2 years agoPosted 2 years ago. Direct link to ArjanK's post “it would be i^3(i^3) = -1...”

      Intro to the imaginary numbers (article) | Khan Academy (4)

      it would be i^3(i^3) = -1^(-1) = 1/-1 = -1

      (20 votes)

  • Michael Mendoza

    8 years agoPosted 8 years ago. Direct link to Michael Mendoza's post “What is the real world ap...”

    What is the real world application for this??

    (73 votes)

    • kurt westphal

      8 years agoPosted 8 years ago. Direct link to kurt westphal's post “design, simulation, analy...”

      Intro to the imaginary numbers (article) | Khan Academy (8)

      Intro to the imaginary numbers (article) | Khan Academy (9)

      Intro to the imaginary numbers (article) | Khan Academy (10)

      design, simulation, analysis of normal and semiconductor circuits, acoustics and speakers, physics., mechanical system vibration, automotive exhaust note tuning, guitar pickups and boutique high power tube/solid state amplifiers, chemical engineering linear/non linear flows, financial modeling, statistics and big data,

      (238 votes)

  • a year agoPosted a year ago. Direct link to Vestige's post “my brain blew up”

    my brain blew up

    (83 votes)

    • oliver.wagner

      a year agoPosted a year ago. Direct link to oliver.wagner's post “the brain can not blow up...”

      Intro to the imaginary numbers (article) | Khan Academy (14)

      Intro to the imaginary numbers (article) | Khan Academy (15)

      Intro to the imaginary numbers (article) | Khan Academy (16)

      the brain can not blow up unless it was overloaded with knowlege

      (66 votes)

  • Mojeb Rahman Zameeri

    a year agoPosted a year ago. Direct link to Mojeb Rahman Zameeri's post “hard to believe there are...”

    hard to believe there are people out there that imagine numbers

    (50 votes)

    • Aeternum

      a year agoPosted a year ago. Direct link to Aeternum's post “Technically, numbers and ...”

      Intro to the imaginary numbers (article) | Khan Academy (20)

      Intro to the imaginary numbers (article) | Khan Academy (21)

      Intro to the imaginary numbers (article) | Khan Academy (22)

      Technically, numbers and mathematics in general are all imaginary. Mathematics is not a physical object that literally exists in the seeable universe. It, like numbers, was made up by humanity.

      (57 votes)

  • Syeda5

    7 years agoPosted 7 years ago. Direct link to Syeda5's post “If imaginary numbers aren...”

    If imaginary numbers aren't real, how is it possible to use them in real life? You can't count things that don't exist so how do you use them?

    (8 votes)

    • kubleeka

      7 years agoPosted 7 years ago. Direct link to kubleeka's post “None of the numbers you u...”

      Intro to the imaginary numbers (article) | Khan Academy (26)

      Intro to the imaginary numbers (article) | Khan Academy (27)

      Intro to the imaginary numbers (article) | Khan Academy (28)

      None of the numbers you use in life are real. Can you show me a 3? Not a drawing or a representation of a 3, but the actual number 3? Of course not. It's just an abstraction.

      You mention counting, but most numbers aren't used for counting either. You can't have exactly √2 apples, or any irrational number of apples. That would require splitting atoms and quarks in impossible ways. Yet a vast majority of the real numbers are irrational. They're not about counting either.

      Numbers are just concepts that follow certain rules. The misleadingly-named real numbers are defined as a complete ordered field. The word "field" just means that they follow 9 certain rules, like "for every real number x, x+0=x" Likewise, "ordered" just adds about 3 more rules, and "complete" adds one more. Any relation to real life is just the result of people applying these abstractions to real-world problems.

      To get the complex numbers, we do a similar thing. Take the real numbers and add in
      1. Every real number is complex.
      2. There is a complex number i such that i²= -1.
      3. The sum of two complex numbers is complex.
      4. The product of two complex numbers is complex.
      5. For any two complex numbers a and b, a^b is complex.

      Now we have this concept of "the complex numbers" that we can further explore. Application to reality is not necessary.

      (72 votes)

  • Daisy Dukealoopakiss

    8 years agoPosted 8 years ago. Direct link to Daisy Dukealoopakiss's post “Can you have different an...”

    Can you have different answers to simplifying depending on what numbers you take from the original, or would those be wrong? For example: Problem 3, instead of using 4 and 6 I used 8 and 3 and it came out to be 2i x square of 2 x square of 2 x square of 3, but it was counted as wrong. Was it wrong because it wasn't what Kahn had, or because it was just wrong?

    (22 votes)

    • jesse.l.kent

      8 years agoPosted 8 years ago. Direct link to jesse.l.kent's post “They were asking for the ...”

      Intro to the imaginary numbers (article) | Khan Academy (32)

      Intro to the imaginary numbers (article) | Khan Academy (33)

      They were asking for the square root. The square root of 4 is 2 so you would have 2i sqrt(6) ... The cubed root of 8 is 2 not the square root.

      (38 votes)

  • 27svinay

    a year agoPosted a year ago. Direct link to 27svinay's post “How would one use an imag...”

    How would one use an imaginary number in real life? If it is imaginary, would it have any use cases? If so, how exactly would you need to use it?

    (10 votes)

    • Tanner P

      a year agoPosted a year ago. Direct link to Tanner P's post “Imaginary numbers are use...”

      Intro to the imaginary numbers (article) | Khan Academy (37)

      Intro to the imaginary numbers (article) | Khan Academy (38)

      Intro to the imaginary numbers (article) | Khan Academy (39)

      Imaginary numbers are used a lot in electrical engineering. They can also used to prove a lot of formulas that are useful in real life. And they are useful in any field that uses quadratic equations or polynomials.

      When you first learned about negative numbers, they probably seemed weird. How can you have less than nothing? You can’t have -1 apples and you definitely can’t have i apples. But you know now how much math depends on using numbers less than zero, and the same thing goes for imaginary numbers.

      (53 votes)

  • Sarah Myers

    8 years agoPosted 8 years ago. Direct link to Sarah Myers's post “Does it matter if the i i...”

    Does it matter if the i is in front or behind of the solution.

    (14 votes)

    • Stefen

      8 years agoPosted 8 years ago. Direct link to Stefen's post “As long as it is clear wh...”

      Intro to the imaginary numbers (article) | Khan Academy (43)

      Intro to the imaginary numbers (article) | Khan Academy (44)

      As long as it is clear what the i is affecting, you can do both.
      EG (2 + 3i) + (4 + 5i) = (2 + 4) + i(3 + 5) or (2 + 4) + (3 + 5)i
      However, there are conventions.
      When we simplify the above we would normally write 6 + 8i, not 6 + i8, but both are fine, but the second one just looks weird. For example, you are used to the notation "1 + 2", but the following notations "+ 1 2" or "1 2 +" are also acceptable in many situations, through they probably looks weird to you now. (The 1st is Polish Notation, the 2nd Reverse Polish Notation)

      Another convention is to place the i before the radical, eg i√8. If you want to place it after, make sure to use parenthesis: (√8)i or √8(i), so as to avoid confusion. If you write √8i, do you mean (√8)i or √(8i)?

      As you keep studying, you will get more and more exposure to the notation conventions we use.

      (38 votes)

  • KaBoom

    a year agoPosted a year ago. Direct link to KaBoom's post “this make no sense”

    this make no sense

    (15 votes)

    • mokracarapacc

      a year agoPosted a year ago. Direct link to mokracarapacc's post “simple actually, the key ...”

      Intro to the imaginary numbers (article) | Khan Academy (48)

      simple actually, the key here is to understand what "i" means; normally the square root of any negative number is impossible to find, because multiplying 2 same numbers ALWAYS gives a positive result; so we made up a new number called "i" which is just the square root of -1

      (16 votes)

  • kitty-chan

    a year agoPosted a year ago. Direct link to kitty-chan's post “Where is I on the number ...”

    Where is I on the number line?

    (8 votes)

    • Tanner P

      a year agoPosted a year ago. Direct link to Tanner P's post “Great question! You can't...”

      Intro to the imaginary numbers (article) | Khan Academy (52)

      Intro to the imaginary numbers (article) | Khan Academy (53)

      Great question! You can't find i on the number line because it only represents real numbers. So, instead we use the complex plane to represent those numbers. On the complex plane, the real-number axis is horizontal and the imaginary axis is vertical.

      And the complex plane opens up a lot of interesting ways to look at complex numbers. For example, the complex number 3+4i would be represented by the point (3,4) on the complex plane. So what would the absolute value of 3+4i be? It would be 5, because the distance from the origin (0,0) to (3,4) is 5.

      (25 votes)

Intro to the imaginary numbers (article) | Khan Academy (2024)

FAQs

What is the i in algebra 2? ›

Learn about the imaginary unit, "i", a unique number defined as the square root of -1. It's a key part of complex numbers, which are in the form a + bi. The powers of "i" cycle through a set of values.

Is every pure imaginary number a complex number? ›

From the first definition, we can conclude that any imaginary number is also a complex number.

How would the imaginary number I be written as a complex number? ›

By making b=0 , any real number can be expressed as a complex number. The real number a is written as a+0i a + 0 i in complex form. Similarly, any imaginary number can be expressed as a complex number. By making a=0 , any imaginary number bi can be written as 0+bi 0 + b i in complex form.

How do you identify imaginary numbers? ›

Imaginary numbers are the numbers when squared it gives the negative result. In other words, imaginary numbers are defined as the square root of the negative numbers where it does not have a definite value.

What grade is algebra I? ›

Some schools may offer Algebra I in either 9th/10th grade OR 11th/12th grade, but not both. Nonetheless, it is important that students have access to Algebra I sometime in their high school career.

What is j in math? ›

Similarly, the imaginary number i (sometimes written as j) is just a mathematical tool to represent the square root of –1, which has no other method of description.

Is √2 a real number? ›

The main difference between real numbers and the other given numbers is that real numbers include rational numbers, irrational numbers, and integers. For example, 2, -3/4, 0.5, √2 are real numbers. Integers include only positive numbers, negative numbers, and zero.

Is 0 a real number? ›

Yes, 0 is a real number in math. By definition, the real numbers consist of all of the numbers that make up the real number line. The number 0 is at the center of the number line, so we know that 0 is a real number. Furthermore, 0 is a whole number, an integer, and a rational number.

Why is 17 a complex number? ›

We can think of 17 as 17 + 0i. In fact all real numbers can be thought of as complex numbers which have zero imaginary part.

Which number equals i7? ›

Powers of
i 1 = ii 0 = 1
i 7 = − ii −6 = − 1
i 8 = 1i −7 = i
i 9 = ii −8 = 1
6 more rows

What are the four powers of i? ›

The powers of i is always equal to either one of these 4 numbers: 1, i , -1,-i.

What kind of number is i? ›

Types of Numbers
NameSymbolSet/Examples
RealR15,√15,0,−2
RationalQ15,51(=5),23,32,03(=0)
IrrationalIπ,√2,√3
ImaginaryNA3i=√−9,−5i=−√−25,3√2i=√−18
3 more rows

Who invented imaginary numbers? ›

The imaginary numbers were first discovered by Girolamo Cardano who lived during the Renaissance (1501-1576). He was a physician, philosopher, mathematician, astrologer, and prolific writer. As he spent most of his youth gambling, he was able to develop many cognitive and problem solving strategies.

What are imaginary numbers used for in real life? ›

Signal processing: Imaginary numbers can also be applied to signal processing, which is useful in cellular technology and wireless technologies, as well as radar and even biology (brain waves). Essentially, if what is being measured relies on a sine or cosine wave, the imaginary number is used.

What symbol is used for imaginary numbers? ›

Usually denoted by the symbol i, imaginary numbers are denoted by the symbol j in electronics (because i already denotes "current"). Imaginary numbers are particularly applicable in electricity, specifically alternating current (AC) electronics. AC electricity changes between positive and negative in a sine wave.

What does the i stand for in algebra? ›

The letter i is used to signify that a number is an imaginary number. It stand for the square root of negative one.

What is the value of i? ›

Basically, “i” is the imaginary part which is also called iota. Value of i is √-1 A negative value inside a square root signifies an imaginary value. All the basic arithmetic operators are applicable to imaginary numbers. On squaring an imaginary number, we obtain a negative value.

What does the letter i represent in algebra? ›

The imaginary unit or unit imaginary number (i) is a solution to the quadratic equation x2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication.

What is the rule of i? ›

i1 = i, this is because any number with exponent 1 is equal to itself, in this case, i itself. i2 = -1, this can be explained by the definition of imaginary number, which says i is defined as. i3 = -i, since i2=-1, i3 = i2 * i = -1 * i = -i. i4 = 1 becausei4 = i3 * i = -i * i = – * = 1.

Top Articles
Career Changers — Teach Chicago
Victory for Working People in Chicago – SEIU Local 73
Ilovepersuasian
Bad Moms 123Movies
Keanu Reeves cements his place in action genre with ‘John Wick: Chapter 4’
Coolmathgames.comool Math
Pa Pdmp Log In
Trey Yingst Parents Nationality
Culver's Flavor Of The Day Paducah Ky
Myhr North Memorial
Stellaris Mid Game
Sevita Sso Login
Tabdil Tarikh
Lesson 10 Homework 5.3
The Closest Dollar Store To My Location
Stephjc Forum
Craigslist Manhattan Ks Personals
SEBO (UK) Ltd on LinkedIn: #sebouk #commercialcleaning #cleaning #floorcleaning #carpetcleaning
Gcfysl
Watch The Lovely Bones Online Free 123Movies
Jeff Danker Net Worth
Missoula Jail Releases
Language levels - Dutch B1 / 2 –What do these language levels mean? - Learn Dutch Online
Women On Twitch Go Without Makeup To Support A Fellow Streamer
Game8 Genshin Impact
Poskes Parts
Does Iherb Accept Ebt
Myrtle Beach Armslist
Central Valley growers, undocumented farmworkers condemn Trump's 'emergency'
Basis Independent Brooklyn
فیلم 365 روز 1 نیکی مووی
Strange World Showtimes Near Amc Hoffman Center 22
charleston rooms & shares - craigslist
Allina Akn Network
Rise Meadville Reviews
Arsenal’s Auston Trusty: Inspired by Ronaldinho, World Cup dreams and Birmingham loan
Bfri Forum
Xxn Abbreviation List 2023
Nahant Magic Seaweed
Princeton Mn Snow Totals
Sam's Club Gas Price Hilliard
City Of Irving Tx Jail In-Custody List
How To Get Mini Tusks In Blox Fruits
How Old Is Ted Williams Fox News Contributor
8 Common Things That are 7 Centimeters Long | Measuringly
Plusword 358
Russia Ukraine war live: Starmer meets Biden at White House but no decision on Ukraine missiles
Order Irs Tax Forms Online
Salons Open Near Me Today
Basketball Stars Unblocked Games Premium
Find Such That The Following Matrix Is Singular.
Penn Highlands Mon Valley | Penn Highlands Healthcare
Latest Posts
Article information

Author: Msgr. Benton Quitzon

Last Updated:

Views: 6285

Rating: 4.2 / 5 (43 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Msgr. Benton Quitzon

Birthday: 2001-08-13

Address: 96487 Kris Cliff, Teresiafurt, WI 95201

Phone: +9418513585781

Job: Senior Designer

Hobby: Calligraphy, Rowing, Vacation, Geocaching, Web surfing, Electronics, Electronics

Introduction: My name is Msgr. Benton Quitzon, I am a comfortable, charming, thankful, happy, adventurous, handsome, precious person who loves writing and wants to share my knowledge and understanding with you.